Жувикина Ирина Алексеевна

учитель математики, доктор физико-математических наук

Государственное бюджетное образовательное учреждение

средняя школа №352 с углубленным изучением немецкого языка

Красносельского района г. Санкт-Петербурга

г. Санкт-Петербург

Маховер Михаил Сергеевич

учитель математики, заслуженный учитель Российской Федерации

Государственное бюджетное образовательное учреждение «Гимназия №11»

Василеостровского района г. Санкт-Петербурга

г. Санкт-Петербург

УРОК ПОДГОТОВКИ К ЕГЭ. ЗАДАЧА № 17 ЭКОНОМИЧЕСКАЯ

Задания №17 на ЕГЭ по математике профильного уровня вызывает серьезные трудности у участников экзамена и, совершенно справедливо, считаются весьма сложными. Эти сложности проистекают не только от того, требует что решение ЭТИХ задач уверенного владения школьным математическим аппаратом, но и тем, что для понимания содержания задачи необходимо иметь общую эрудицию, значительно превышающую средний уровень. Например, для решения задач, содержание которых связано с банковскими операциями, получением и выплатой кредита, учетом банковского процента требуется уверенное оперирование экономическими понятиями. Однако, по нашему опыту, все-таки самым сложным при решении задания № 17 является составление математической модели процесса, о котором говорится в условии. От участника экзамена требуется выявить все величины, с которыми связан этот процесс, дать им обозначения, понять, какие значения они могут принимать, определить, какие из них являются постоянными, а какие меняются и в каких пределах. Далее - эти величины необходимо связать между собой с помощью уравнений или неравенств. Затем понять, будет ли

достаточным для нахождения искомой величины ограничиться алгебраическими методами, или необходимо использование методов математического анализа, т.е. требуется ли исследование какой-либо функции на монотонность, определение наибольшего или наименьшего значения и т.п.

На этом уроке мы рассмотрим алгоритм составления математической модели содержания одного из возможных типов экономической задачи.

Задача [1]. В двух областях есть по 100 рабочих, каждый из которых готов трудиться по 10 часов сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,3 кг алюминия или 0,1 кг никеля. Во второй области для добычи x кг алюминия требуется x^2 , а для добычи y кг алюминия требуется y^2 человеко-часов труда.

Обе области поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 2 кг алюминия приходится 1 кг никеля. При этом области договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно может произвести завод?

Решение. Для начала займемся составлением математической модели процесса добычи металлов в двух областях. В каждой области есть по 100 рабочих, часть из которых занята добычей алюминия, остальные — добычей никеля. Пусть добычей алюминия в первой области занято N_1 рабочих, а во второй - N_2 рабочих. Следовательно, никель добывают $100 - N_1$ человек в первой области и $100 - N_2$ во второй. При чтении условия задачи становится ясным, что зависимость количества добытого металла от числа занятых рабочих и затраченного времени существенно различна в двух областях. В первой области - это обычная линейная зависимость, то есть количество добытого металла пропорционально числу рабочих и затраченному времени. Коэффициентом пропорциональности является скорость выработки, а именно

количество добытого металла одним рабочим в единицу времени. Тогда, если Δt – время, которое трудятся рабочие в течение суток, то за сутки в первой шахте будет добыто алюминия $v_{AI}N_1\Delta t$, и $v_{Ni}(100-N_1)\Delta t$ никеля, где v_{AI} – количество алюминия, добываемое в первой шахте одним рабочим в единицу - количество никеля, добываемое в первой шахте одним времени и v_{Ni} рабочим в единицу времени. По условию задачи $v_{Al}=0$,3 $^{\rm K\Gamma}/_{
m YeJ}\cdot_{
m YaC}$ $v_{Ni} = 0.1 \, {}^{\rm K\Gamma}/_{\rm Чел} \cdot {}_{\rm Час}$. Следует подчеркнуть, что эти величины по смыслу не являются просто числами, а имеют размерность. К сожалению, анализу размерности величин, описывающих различные процессы, на школьных уроках математики внимания практически не уделяется. Здесь в выигрышном положении оказываются ученики, серьезно занимающиеся физикой, для которых анализ размерности величин есть привычная процедура при решении задач. В любом случае, при подготовке школьников к ЕГЭ, следует подчеркнуть, что размерные величины, в отличие от обычных чисел, будут меняться, если мы будем менять систему единиц измерения. Например, если в данной задаче количество рабочих мы будем измерять в бригадах, а время работы в минутах, то величины v_{Al} и v_{Ni} соответствующим образом изменятся.

Во второй области зависимость добытого металла от числа рабочих и затраченного времени не является линейной. Именно этот момент является самым сложным для понимания в этой задаче. Надо иметь достаточный уровень математической эрудиции, чтобы понять, что во второй области за время Δt будет выработано $u_{Al}N_2^{\alpha}\Delta t^{\alpha}$ алюминия и $u_{Ni}(100-N_2)^{\alpha}\Delta t^{\alpha}$ никеля. Значения параметра α в этой задаче равно 1/2, а u_{Al} и u_{Ni} — величины, явно никак не обозначенные в условии задачи и способность «увидеть» их говорит об очень высоком уровне подготовки участника экзамена в части математического моделирования. Эти величины являются размерными и

имеют смысл скорости выработки металла во второй области. В данной задаче $u_{Al}=u_{Ni}=1\,{}^{\rm K\Gamma}/_{{\rm up}\pi^{1/2}{\rm up}c^{1/2}}.$

В условии данной задачи известными являются все величины, кроме N_1 и N_2 . Перераспределяя количество рабочих, занятых на добыче алюминия и никеля в шахтах, мы можем управлять общей суммарной выработкой металлов. Составим функцию, определяющую зависимость полного количества добытого металла (алюминия и никеля вместе) от этих переменных величин

$$X(N_1, N_2) = v_{Al}N_1\Delta t + v_{Ni}(100 - N_1)\Delta t + u_{Al}N_2^{\alpha}\Delta t^{\alpha} + u_{Ni}(100 - N_2)^{\alpha}\Delta t^{\alpha}$$
 (1)

Полученная функция является функцией двух аргументов, и исследование ее свойств выходит за рамки школьной программы. Если нам удастся выразить одну из величин N_1 и N_2 через другую, то мы сможем получить функцию уже одного аргумента, а, исследуя ее на наибольшее значение, найти оптимальное распределение рабочих между добычей алюминия и никеля. Для этого нам нужно воспользоваться ещё одним условием задачи, к которому мы пока не обращались. Это условие, что в готовом сплаве на 2 кг алюминия приходится 1 кг никеля. Запишем его в общем виде и получим недостающую связь между переменными N_1 и N_2 :

$$v_{Al}N_1\Delta t + u_{Al}N_2^{\alpha}\Delta t^{\alpha} = k(v_{Ni}(100 - N_1)\Delta t + u_{Ni}(100 - N_2)^{\alpha}\Delta t^{\alpha}), \quad (2)$$

где k — параметр, определяющий соотношение алюминия и никеля в сплаве, в данной задаче k=2. Выразим N_1 из выражения (2)

$$N_{1} = \frac{100 k v_{Ni}}{v_{Al} + k v_{Ni}} + \frac{\Delta t^{\alpha}}{\Delta t (v_{Al} + k v_{Ni})} (k u_{Ni} (100 - N_{2})^{\alpha} - u_{Al} N_{2}^{\alpha}).$$
(3)

Подставим выражение (3) в (1) и получим зависимость количества выработанного сплава в зависимости от одной переменной величины N_2

$$X(N_2) = 100v_{Ni}\Delta t \frac{(k+1)v_{Al}}{v_{Al}+kv_{Ni}} + \Delta t^{\alpha} u_{Al} \frac{(k+1)v_{Ni}}{v_{Al}+kv_{Ni}} N_2^{\alpha} + \Delta t^{\alpha} u_{Ni} \frac{(k+1)v_{Al}}{v_{Al}+kv_{Ni}} (100 - N_2)^{\alpha}$$
(4)

Для исследования этой функции на наибольшее значение возьмем от неё производную

$$X'(N_2) = \alpha \Delta t^{\alpha} u_{Al} \frac{(k+1)v_{Ni}}{v_{Al} + kv_{Ni}} N_2^{\alpha - 1} - \alpha \Delta t^{\alpha} u_{Ni} \frac{(k+1)v_{Al}}{v_{Al} + kv_{Ni}} (100 - N_2)^{\alpha - 1}$$

Приравнивая правую часть полученного выражения к нулю, получим уравнение для нахождения величины N_2 , обеспечивающее наибольшее значение функции $X(N_2)$

$$\left(\frac{u_{Al}v_{Ni}}{u_{Ni}v_{Al}}\right)^{1/\alpha - 1} N_2 = (100 - N_2) . (5)$$

Отметим, что из этого уравнения полностью выпали величина Δt - время продолжительности работы в сутки и параметр k, определяющий соотношение металлов в сплаве. Этого никак увидеть было нельзя непосредственно из условия задачи. Само же уравнение приняло простой линейный вид относительно искомой величины N_2 . Подставляя значения параметров в уравнение (5), найдем $N_2=10$.

Далее, значение функции $X(N_2)$ при $N_2=10$ дает искомое количество сплава. Подставив числовые значения параметров в выражение (4), окончательно найдем

$$X(10) = 0.1 \cdot 100 \cdot 10 \frac{3 \cdot 0.3}{0.3 + 0.2} + 10^{1/2} \frac{3 \cdot 0.1}{0.3 + 0.2} 10^{1/2} + 10^{1/2} \frac{3 \cdot 0.3}{0.3 + 0.2} 90^{1/2} =$$

$$= 180 + 6 + 54 = 240(\kappa\Gamma)$$

Ответ: 240 килограммов.

Список литературы

1. И.В. Ященко, М.А. Волкчкевич, И.Р. Высоцкий и др. ЕГЭ 2017. Математика. Профильный уровень. 50 вариантов типовых тестовых заданий. Под ред. И.В. Ященко.- М.: Издательство «Экзамен», 2017.- 247[1] с.